Ethanol electrooxidation on the Co@Pt core-shell nanoparticles modified carbon-ceramic electrode in acidic and alkaline media
Authors
Abstract:
In this study, the electrocatalytic activity of the Co@Pt core-shell nanoparticles toward the ethanol oxidation reaction has been investigated by cyclic voltammetry and chronoamperometry in acidic and alkaline media in details. The physicochemical data obtained in alkaline solution are compared to those in acidic solution. The obtained results demonstrate that while in the both media Co@Pt core-shell nanoparticles exhibit a good electrocatalytic performance for ethanol oxidation reaction; in alkaline medium the Co@Pt core-shell catalyst presents more catalytic activity (1.4 times), exchange current densities (about 8 times), electrochemical active surface area (1.2 times) and stability (about 2 times). The effect of some experimental factors such as electrolytes (H2SO4 and NaOH) and ethanol concentrations was studied and optimum conditions were suggested. From these points, we conclude that ethanol oxidation reaction can be improved with an alkaline electrolyte and the oxidation reaction is highly dependent on the pH of electrolyte. These results indicate that the system studied in the present work; Co@Pt core-shell nanoparticles on the carbon-ceramic electrode, is the most promising system for use in alkaline fuel cells.
similar resources
Electrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode
In the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode (Fe3O4@Pt/CCE). The Fe3O4@Pt nanoparticles were prepared via a simple and fast chemical method and their surface morph...
full textNi@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...
full textelectrooxidation of formic acid and formaldehyde on the fe3o4@pt core-shell nanoparticles/carbon-ceramic electrode
in the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the fe3o4@pt core-shell nanoparticles/carbon-ceramic electrode (fe3o4@pt/cce). the fe3o4@pt nanoparticles were prepared via a simple and fast chemical method and their surface morphology, nanostructure properties, chemical composition, crystal phase, ...
full textni@pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. in this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of pt thin layer as the shell and ni nanoparticles as the cores. the described method herein is suitable for large-scale and low-cos...
full textElectrosynthesized Reduced Graphene Oxide-Supported Platinum, Platinum-Copper and Platinum-Nickel Nanoparticles on Carbon-Ceramic Electrode for Electrocatalytic Oxidation of Ethanol in Acidic Media
In this work, the electrocatalytic oxidation of ethanol was studied in acidic media at the wholly electrosynthesized nanocomposites: platinum and its alloys (copper and nickel) anoparticles/reduced graphene oxide on the carbon-ceramic electrode (Pt/rGO/CCE, Pt-Cu/rGO/CCE, and Pt-Ni/rGO/CCE electrocatalysts). The electrosynthesized nanocomposites were characterized by scan...
full textCore–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol
Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...
full textMy Resources
Journal title
volume 3 issue 1
pages 19- 31
publication date 2016-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023